
The end-to-end length distribution of self-avoiding walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1973 J. Phys. A: Math. Nucl. Gen. 6 338

(http://iopscience.iop.org/0301-0015/6/3/009)

Download details:

IP Address: 171.66.16.73

The article was downloaded on 02/06/2010 at 04:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/6/3
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Math., Nucl. Gen., Vol. 6, March 1973. Printed in Great Britain. Q 1973 

The end-bend length distribution of self-avoiding walks 

D S McKenzie 
Queen Elizabeth College, University of London, Campden Hill Road, London W8, UK 

MS received 23 August 1972 

Abstract. The distribution of end-to-end lengths of an n step self-avoiding walk has been 
calculated for walks of up to 10 steps on the face-centred cubic lattice and up to 12 steps on 
the triangular lattice. The data on both lattices have been extended to higher step lengths 
for walks with short end-to-end lengths. The regions of short end-to-end lengths and long 
end-to-end lengths have been analysed separately. The results show that the region of long 
end-to-end lengths behaves predictably in contrast to the region of short end-to-end 
lengths. A new analytical form for the distribution close to the origin is suggested. The 
results throw considerable light on the scaling laws first introduced to explain critical 
phenomena. It is suggested that the strong-scaling hypothesis is untenable in both two and 
three dimensions. A new characteristic length is introduced and its magnitude is calculated. 

1. Introduction 

A self-avoiding walk on a regular crystal lattice is a well-known model of a polymer 
molecule. The self-avoiding condition, that no lattice site may be simultaneously 
occupied by two segments of the polymer chain, allows the model to take account of 
‘excluded volume’ effects (see Domb 1969 for a recent review). The theoretical elucida- 
tion of the properties of polymer solutions including excluded volume effects has proved 
a particularly intractable problem. This study follows one of the perhaps more success- 
ful of the various approaches. 

The method has been to make an exact enumeration of all possible self-avoiding 
walks with given end points and up to a certain number of steps. The introduction of 
a lattice model greatly simplifies the  numerical calculations. Furthermore, it accounts 
crudely for some of the internal chemical structure of a real molecule. This paper will 
be concerned with studies on two lattices, the face-centred cubic FCC in three dimen- 
sions and the triangular in two dimensions. We calculate the distribution exactly for 
short walks and extrapolate the data to obtain the asymptotic behaviour of long walks. 
We have calculated the distribution for walks of up to 10 steps on the FCC and up to 12 
steps on the triangular. 

The model has been studied previously using the same method by Domb et a1 (1965). 
We corroborate and extend their results which were obtained for the simple-quadratic 
and simple-cubic lattices. There have been many Monte-Carlo studies of self-avoiding 
walks of which that by Mazur and McCrackin (1968) is most relevant to the subject of 
this paper. Our results compare favourably with the Monte-Carlo studies. Recently 
there have been several attempts to  determine the distribution analytically using self- 
consistent field methods. This approach is associated with Edwards (1965), Reiss (1967) 
and Yamakawa (1968). The numerical work gives an independent test of the success of 
such theories. 
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It has been realized for a number of years that there is a close relation between the 
excluded volume problem and the king model of ferromagnetism. This relation has 
been explored in detail by Domb (1970). The end-to-end length distribution is analogous 
to  the spin-spin correlation function of the Ising model. By exploiting this analogy 
McKenzie and Moore (1971) have suggested an analytical form for the end-to-end 
length distribution which is valid for walks with a large number of steps and large end- 
to-end lengths. If p,(r) is the probability that a walk of n steps reaches the point r from 
the origin, McKenzie and Moore suggest that for large n 

for r >> R , .  In this equation A is a constant, R ,  is a ‘scaling’ length and 6 and g are 
indices which determine the shape of the distribution. If it is assumed that the scaling 
length behaves as 

R ,  - Ronv, n -, CO, (2) 

where R ,  is a constant then one can deduce that 6 and v are related by 

This relation was earlier suggested by Fisher (1966). McKenzie and Moore also 
predicted a scaling relation involving g. One of the major aims of this paper is to 
examine the data in the light of equation (1). We shall show that the numerical data are 
consistent with equation (1) if v = 3 for the FCC lattice and v = 0.745 for the triangular 
lattice. (Note that v = 3 corresponds to  a gaussian distribution.) The scaling relations 
involving 6 and g are also found to  be correct within the errors implicit in this type of 
study. This work is contained in $9 3 and 4. The spherical symmetry of the distributions 
has been assumed (Domb et a1 1965). 

The derivation of the form of the distribution in (1) is correct only for r >> R , .  The 
contrary limit of fixed r and n + CO will be considered in $ 5 .  The major suggestion 
concerning the behaviour of the distribution close to  the origin is the so-called ‘strong 
scaling’ hypothesis, which we shall state as 

for all r and  n -, a, Since the numerical data show a dip in the distribution close to  the 
origin it is reasonable to assume that F behaves as 

F(Y)  - Y h  ( 5 )  

as y + 0 or in the context of (4) for fixed r and n -+ 30. McKenzie and Moore predicted 
a scaling relation involving h. The numerical data have been used to calculate h and 
it will be shown that the scaling relation is not obeyed on the FCC but is obeyed on the 
triangular lattice. However, further analysis shows that the agreement for the tri- 
angular lattice is fortuitous and that for both lattices a better fit to  the numerical data is 
obtained with a logarithmic dependence on r when r is small. This result is impossible 
to  reconcile with the scaling form (4) and we suggest that for neither lattice is the strong- 
scaling hypothesis useful. 
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Although our main results are of direct interest in the study of magnetic systems and 
more generally in the theory of second-order phase transitions, they are also of interest 
in the field of polymers. Most experimental and theoretical studies of polymer solutions 
are applicable close to  the Flory 'theta' point, which is defined by those conditions of 
temperature, solvent and polymer solute such that the excluded volume effect is balanced 
by net attractive forces between the segments of the polymer chain so that the average 
shape of the molecule is gaussian. The theta point is always close to the gel point of the 
solution so that the thermodynamic properties of the solution are varying rapidly as 
the transition is approached. Experimentally it is more convenient to work with 
athermal solutions, that is, solutions for which the heat of dilution is zero. The self- 
avoiding walk model corresponds to  an athermal solution. Our results are therefore 
of interest to experimenters studying polymers dissolved in 'good' solvents. 

2. Preliminaries 

In this section we shall describe how the data were calculated and describe some 
preliminary calculations. 

The data for the distribution up to 10 lines on the FCC were calculated on the KDF9 
computer at the National Physical Laboratory using a program developed by Dr J L 
Martin of King's College, London. The calculation took approximately 20 hours even 
taking considerable account of symmetry. The data on the points closest to  the origin 
at 11 lines on the FCC were calculated by Watts and Martin and are published by Sykes 
et al(1972a). The data for the distribution up to 12 lines on the triangular lattice were 
calculated on the IBM 360/65 computer at University College, London using the same 
program. The time taken was 27i minutes. The data on the points closest to the origin 
up to 15 lines on the triangular were calculated on the same computer and took about 
4 hours. The data on the points closest to the origin are tabulated in the Appendix. 

An important quantity derived from the distribution data is the total number of 
self-avoiding walks C,. This number gives an important check on the data and is also 
the normalization constant for the distribution. Following Domb (1969) we assume 
that C, behaves as 

for large n where C, is a constant and p is the 'effective coordination number' or 'con- 
nective constant'. The existence of p has been proved by Hammersley (1957). We con- 
firm the results of Sykes et al (1972b), who have more extensive data, that for the FCC 
lattice p = 10.035 and 7 = 2 and for the triangular lattice p = 4.1517 and y = 4 .  In 
the Ising model y describes the critical behaviour of the high-temperature susceptibility 
in zero field. 

A second quantity of interest is U,, the number of self-avoiding walks of n steps 
which return to one step from the origin. It is assumed that 

U ,  - U,nZ-2pn 

where U, is a constant. The identification of p in (6) and (7) has been proved by 
Hammersley (1961). It has been shown that a- = d for the FCC lattice and a = 9 for the 
triangular lattice (Sykes et  a1 1972b). In magnetic systems c( describes the behaviour of 
the specific heat as the critical temperature is approached from above in zero field. 
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Finally, we may calculate the mean square end-to-end length pn(2) .  It is assumed 
that 

pn(2) - pZnZV' a s n - r c o .  (8) 

The index 2))' can be estimated by extrapolation using Neville tables. Table 1 shows that 
for the FCC lattice 2v' = 1.200f0~005 and for the triangular lattice 2v' = 1.49f0.01. 
The uncertainties in 2v' are estimated from table 1. We deduce that v' = 0.600f0.003 
for the FCC and 11' = 0.745 f0.005 for the triangular. The corresponding values of p are 
p = 0.9594 for the FCC and p = 0.865 for the triangular. On each lattice the bond 
length is taken as unit length. 

Table 1. Neville tables of estimates to 2v' for the FCC and triangular lattices, derived from 
the second moment ~ " ( 2 )  where ~ " ( 2 )  - p2n2" 
FCC n Estimates 

2 1.1818 
3 1,2044 1.2270 
4 1,2118 1.2265 1,2263 
5 1,2140 1.2205 1.2144 
6 1.2135 1,2117 1,1984 
7 1.2122 1.2057 1.1937 
8 1,2110 1.2040 1,1999 
9 1.2100 1.2026 1.1983 

10 1.2090 1.2013 1,1966 

Triangular n Estimates 

2 1.4000 
3 1.5145 1.6290 
4 1.5167 1.5210 1.4670 
5 1,5063 1.4754 1.4298 
6 1.5002 1.4754 1,4754 
7 1.5000 1,4991 1.5465 
8 1.4973 1.4815 1.4376 
9 1.4960 1.4866 1,5018 

10 1,4951 1,4879 1.4924 
11 1.4942 1.4859 1.4781 
12 1,4936 1.4874 1,4943 

3. Higher moments 

We propose to investigate the shape of the end-to-end length distribution by studying 
the behaviour of the moments of the distribution. If p , ( t )  is the tth moment of an n step 
walk and C,(r) is the number of self-avoiding walks which start at the origin and end 
at the lattice site r then we define formally 

By analogy with (8), let us assume that 
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where R ,  is a constant and ,It is to be determined by extrapolation. With t in the range 
- 10 < r < 10 and using Neville tables, we obtain the results for A, shown in figures 1 
and 2. The figures show a striking difference in behaviour between positive and nega- 
tive moments. For the positive moments we obtain a good fit to the data with At = vt 
with v = 3 for the FCC and v = for the triangular. Within the limits of error these 
values of v agree with those obtained from the second moment alone. There is a certain 
amount of curvature in figure 2 which is probably related to the slowness of convergence 

Figurel.  lattice plotofn,againstt.j.,isdefinedfrom therthmomentp,(t)byp"(t) r U'' 

The broken lines represent 1, = 0.6t and 1, = - 1.92 

Figure 2. TrianguIar lattice: plot of A, against t . i., is defined from the tth moment pc . ( t )  by 
p,(t) -JC n". The broken lines represent 1, = 0.75t and I ,  = - 1.83. 
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of the data for the triangular lattice. The linear dependence of I t  on t for t > 0 suggests 
the introduction of a quantity R ,  such that 

Pn(t) Ri 
and 

R ,  - Ronv, for large n. 

Since the positive moments weight disproportionately the ‘tail’ of the distribution, we 
therefore suggest that the decay of the distribution for large r can be represented by a 
single scaling length R , .  Along with (12)  this is one of the main assumptions in the 
derivation of equation (1) by McKenzie and Moore. 

In contrast, for t  < 0,1, rapidly tends to  a limiting value. The origin of this behaviour 
can be seen directly. As t becomes more negative the configurations with small end-to- 
end lengths make the dominant contribution to the moments. In the limit t + - cx) 
only the walks whose end points are unit distance apart make a contribution. That is, 

P A t )  -+ Cn(l)/Cn ast-+-cx) .  

But C,(l) is just U,, so that for large n, 

P A t )  -+ VJCn 

(13) - n 4 - 1 - Y  U0 

CO 

But a- 1 - y  = -% for the FCC lattice and -9 for the triangular lattice. The lines 
A, = a - 1 - y have been inserted in figures 1 and 2. I t  can be seen that the limiting value 
is obtained at about t = - 6 for the FCC lattice but that convergence is much slower for 
the triangular lattice. 

On the basis of figures 1 and 2 we postulate that the distribution shows different 
behaviour for short end-to-end lengths and long end-to-end Iengths and that there is a 
sharp transition between the two types of behaviour as shown by the intersection of 
the broken lines 2, = CY - 1 - y and I, = v t  in figures 1 and 2.  The deviation of the real 
data from this ideal behaviour in the region close to the intersection would be expected 
because of the limited amount of data and difficulties in extrapolation. With the values 
of CY, y and v given above, the lines intersect at t = - 3& for the FCC lattice and t = - 24 
for the triangular lattice. 

4. Large end-to-end lengths 

Assuming the existence of two types of behaviour, we now investigate each in turn. 
We shall postpone study of the region of small end-to-end lengths until the next section 
and concentrate first on the behaviour of the distribution for large end-to-end lengths. 
For r >> R ,  it is plausible to expect the distribution to  be described by equations (1) 
and (2) together with the ‘scaling relations’ deduced by McKenzie and Moore namely 
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Our purpose in this section is to verify that these relations are satisfied by calculating 
g and 6, and that equation (1) adequately describes the distribution with the calculated 
values of g and 6. To accomplish this we define ‘reduced’ moments a,([) by 

on(d = Pn(MPn(2))f’z. (16) 

Because the decay of the distribution is governed by a single scaling length R ,  as demons- 
trated in the previous section, the reduced moments should become independent of n 
for large n, that is, 

on(t) -+ or 3 n-+  x. (17) 

The of depend therefore only on the shape of the distribution and hence can be used to 
determine the shape parameters g and 6. Neville tables of 0,(4) and 0,(6) are shown in 
table 2, and the estimated values of a, are shown in table 3. As can be seen from table 2, 
the a,([) converge slowly so that our confidence in the values of o, obtained by this 
method is not high. 

To obtain a better guide to the errors introduced by the extrapolation we have 
proceeded indirectly. From (1) it is readily deduced that 

By choosing suitable values of g one can find a value of 6 such that a, = a,(t) for each 

Table 2 .  Neville tables of estimates to the reduced moments u4 and u6 for the FCC and 
triangular lattices. ut is defined by equation (17) 

FCC n Estimates to u4 Estimates to u6 

1 1~0000 
2 1,2222 1,4444 
3 1,2932 1.4352 
4 1.3290 1,4362 
5 1,3513 1.4404 
6 1,3671 14462 
7 1,3792 1,4518 
8 1.3888 1.4564 
9 1.3968 14602 

10 1,4034 1,4635 

Triangular n Estimates to u4 

1 ~oooo 
1.6806 2,3611 

1.4307 1.9642 2.5314 
1.4372 2,1182 2,5804 
1.4468 2.2175 2.6144 
1.4577 2.2889 2.6463 
1.4659 2,3441 2.6153 
1.4702 2.3885 2.6993 
1.4736 2.4253 2,7196 
1.4764 2.4565 2.7369 

Estimates to u6 

2.6166 
2.6294 
2.6654 
2.7101 
2,7476 
2.7715 
2,7906 
2.8063 

1 1~0000 
2 1.3000 1.6000 
3 1,3083 1.3249 
4 1.3305 1.3972 
5 1.3473 1.4146 
6 1.3592 1.4187 
7 1.3686 1.4249 
8 1,3765 1.4317 
9 1.3831 1.4362 

10 1.3888 1.4399 
11 1.3938 14433 
12 1.3981 14460 

1.4873 
1,4696 
1.4408 
1.4267 
14406 
1.4520 
1.4521 
1.4547 
1.4585 
1.4595 

1 ~oooo 
2.0500 
2.0547 
2.1291 
2,1924 
2.2378 
2.2737 
2.3043 
2,3304 
2.3530 
2.3729 
2,3907 

3.1000 
2.0640 
2,3522 
24459 
2,4647 
2,4890 
2.5183 
2,5391 
2.5565 
2,5124 
2.5857 

1.5460 
2.6405 
2.5864 
2.5022 
2.5499 
2.6063 
2.6117 
2.6260 
2.6441 
2.6519 
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Table 3. Estimates of u4, u6, u8 and u , ~  obtained by extrapolation using Neville tables, 
compared with the estimates obtained by substituting equations (20) and (21) for 6 and g 
into (19). The error limits in the latter estimates correspond to those quoted in (20) and (21) 

FCC t U, (extrapolated) U, (by substitution) 

4 1.48 1.481 kO.007 
6 2.87 2.85 f 0.04 
8 6.75 6.75 f 0.1 5 

10 18.5 18.5 f 0.7 

Triangular 4 I .46 1.455 & 0.008 
6 2.65 2.6 4 & 0.04 
8 5.65 5.61 k0.14 

I O  13.9 13.4 + 0.5 

moment and each value of n. That is, for each moment and each value of n a set of values 
of g and 6 can be found such that (18) is satisfied exactly. We have then extrapolated 
the values of 6 for a given value of g so as to produce an asymptotic relation between g 
and 6 for each moment. We have therefore eight asymptotic relations between g and 6 
for 3 d t d 10 which satisfy both the numerical data and equation (18). The spread 
between the relations for different moments is small and gives confidence in the extra- 
polation procedure. The hatched areas in figures 3 and 4 summarize the results of the 
numerical calculations. The error bars were estimated from the spread of the results 
between different moments and different methods of extrapolation. (Ratio plots were 
also used.) 

A second theoretical relation between g and 6 is obtained by eliminating v between 
equations (14) and (15) and substituting the appropriate values of d and y. We obtain 

;g+: for the FCC lattice 
(19) = {  for the triangular lattice. 

g + d  6 =  
l+fd-y 3g+3 

Figure 3. FCC lattice: the relation between 6 and g. The hatched area is the relation derived 
from the numerical data by extrapolation. The straight line represents 6 = $g+$. 
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Figure 4. Triangular lattice: the relation between 6 and g. The hatched area is the relation 
derived from the numerical data by extrapolation. The straight line represents 6 = $g + 3. 

This relation is shown by the straight line in figures 3 and 4. The intersection of this 
line with the hatched area gives the values of 6 and g which are consistent with the 
numerical data and equation (19). We estimate 

2.5 1 f 0.02 

3.82 k 0.04 

for the FCC lattice 

for the triangular lattice 
6 = {  (20) 

g = {  

v = {  (22) 

and 

0.35 f 0.03 

0-55 k 0.03 

for the FCC lattice 

for the triangular lattice. 
(21) 

The error limits in (20) and (21) are taken from figures 3 and 4. We may now check 
equation (14) by calculating v using (20) and comparing with the values of v’ obtained 
from the second moment. Substituting (20) into (14) we obtain 

0.602 k 0-003 

0.739 k 0.003 

for the FCC lattice 

for the triangular lattice. 

These values of v agree closely with those of v‘ obtained previously. 
Finally, the reduced moments ot can be calculated by substituting (20) and (21) into 

(18). For the 4th, 6th, 8th and 10th moments we obtain the values shown in table 3. 
The close agreement with the extrapolated values gives added weight to the internal 
consistency of our approach. 

To summarize our conclusions so far, there is convincing evidence that for r >> R, ,  
the end-to-end length distribution can be described by 

P M  = ”( R: qg R ,  erp{ - ( j q }  
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which is a function of a single scaling length R,  . Furthermore, if R,  - RonV for large n 
then the relations 

g =  
1 - i d  + d~ - y 

and 

1 a = - -  
1-v 

are consistent with the numerical data when v = 3 and y = 2 for the FCC lattice and 
Y = 0.745 and y = 4 for the triangular lattice. We also obtain Ro = 0.879 for the FCC 
lattice and 1.048 for the triangular lattice. 

5. Small end-to-end lengths 

The major hypothesis to be tested in this section is the so-called 'strong scaling' 
hypothesis, which states that p,(r) can be described by a single scaling length R,  such 
that 

for arbitrary values of r /R, .  We have shown that when r >> R, the evidence in favour 
of a scaling form for p,(r) is strong. We now examine the region of the distribution given 
by r << R, .  In particular, we shall consider the asymptotic behaviour of the distribu- 
tion for fixed values of the end-to-end length. 

In these circumstances, it is reasonable to assume that the distribution behaves in 
a manner similar to U ,  (equation 7). That is we assume that 

C,(r) - f(r)n"-'p' (24) 

for fixed r and n -, CO. This hypothesis is supported by Hammersley (1961) who showed 
that for walks whose end points are O(n) apart, p in (24) exists and is identical with p 
occurring in (6) .  With p = 10.035 for the FCC and p = 4.1517 for the triangular lattice, 
we can check (24) by extrapolating the data for various values of r to  find a - 2. A sample 
of the results are shown in table 4. Allowing for the paucity of data, it is reasonable to 
conclude that a = for the FCC and a = 3 for the triangular lattice for all values of r .  
The functionf(r) has been estimated by extrapolating the values of C,(r)/nu-2pn. The 
results are shown in table 5 where it can be seen thatf(r) is a slowly increasing function 
of r .  

From the definition of p,(r) it immediately follows from (24) that 

with r fixed and n -, CO. Since there is no explicit mention of a scaling length in (25), 
one does not anticipate satisfying the scaling hypothesis. However it was argued by 
McKenzie and Moore that if F(y)  had the form 

F(Y)  Y h  (26) 
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Table 4. Neville tables of estimates to the index a - 2  for walks which return to the points 
(0,0,2) and (1,1,2) for the FCC lattice and the points (0,2) and (1,l) for the triangular lattice 
on  the assumption that the number of walks behaves as n"-'(10.035)" for the FCC and 
r1"-*(4~1517)" for the triangular lattice 

FCC 17 Estimates for (0,0,2) Estimates for (1,1,2) 

6 -1.239 - 1,524 - 1.784 -1.134 -1,745 -1,811 
7 -1.308 - 1,651 - 1.904 - 1,227 - 1.694 -1,591 
8 - 1,349 - 1,600 - 1.474 - 1.287 - 1.647 - 1.530 
9 - 1.386 -1,639 - 1.753 -1,332 -1.649 - 1,654 

10 - 1.416 - 1,656 - 1.717 -1.369 - 1.665 - 1,720 
11 - 1.441 - 1.674 - 1.746 - 1,400 -1,678 - 1.731 

Triangular 17 Estimates for (0,2) 

10 - 1.561 - 1.247 
11 - 1,534 - 1.243 
12 -1.517 - 1,304 
13 - 1,502 - 1,320 
14 - 1.492 - 1.347 
15 - 1,484 - 1.367 

Estimates for (1,l) 

- 1.765 - 1.525 - 1.203 -2,068 
- 1.222 - 1,508 - 1,325 - 1.935 
- 1.641 - 1.491 - 1,285 - 1,063 
- 1.412 - 1.482 - 1,361 - 1.820 
- 1,524 - 1.474 - 1,368 - 1410 
- 1.506 - 1.469 - 1.392 - 1,561 

Table 5. Estimates o f / ( r )  = limn-x C,(r)/(lO.O35)",i-"-' for the FCC lattice and / ( r )  = 

limn+= C,(r)~(4~1517)"n-"s for the triangular lattice 

FCC Triangular 

Point r .I ( r )  Point r f ( r )  

0,1,1 1.000 
0,0.2 1,414 
1.1.2 1,732 
0.2,2 2.000 
0,1,3 2 236 
2,2,2 2.449 
1,2,3 2.646 
0.3,3 3,000 

0.186 0,1 
0,225 1.1 
0.242 0,2 
0.255 1.2 
0,267 0.3 
0.274 2.2 
0.283 1.3 
0.300 0.4 

1.000 0.36 
1.732 0.50 
2,000 0.53 
2.646 0.60 
3,000 0.62 
3.461 0.66 
3,606 0.67 
4.000 0.70 

for y + 0, then (23) and (25) could be made consistent with 

j !  + 1 - d r - a  
h =  

I' 
( 2 7 )  

With j !  = z ,  t( = and v = 3 (27) predicts that h = & ( = 0.194) for the FCC lattice, and 
with y = $, a = and I' = 0.745 we predict h = 0.46 for the triangular lattice. The 
index h can be obtained from the extrapolated values off(r) (table 5) whose dependence 
on r must be identical with that of F ( y ) .  A least squares fit of the data to the equation 

lnf(r)  = h l n r + l n b  (28) 

where b is a constant gives h = 0.42 for the FCC and h = 0.46 for the triangular lattice. 
The value of h for the triangular is identical with the predicted value, a result which is 
almost too good to be true. However, the prediction is clearly contradicted for the 
FCC lattice. 
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To determine the source of the discrepancy for the FCC lattice we must examine the 
assumptions we have made in more detail. There appear to be three main assumptions : 
the scaling form (25) for pn( r ) ;  equation (24) describing the behaviour of Cn(r); and the 
form (26) for F(y ) .  The evidence in favour of (24) is strong and has been described 
above. We shall therefore concentrate first on the assumption (26). Of course there 
are many possible functions one might choose to represent F ( y ) ,  but let us first consider 
the addition of a constant term B to  (27) so that 

F ( y )  a B + yh. (29) 
The presence of a constant would have a marked effect on the log-log plot which was 
used to  determine h. We have fitted the data using least squares to  the function 

f ( r )  = a+brh (30) 
for different values of h. If (26) were correct, one would expect the sum of the squares 
of the deviations from (30) to have a minimum when a is zero and h has the value found 
previousiy. The results are shown in table 6. The sum of the squares of the deviations 
is monotonically decreasing with h down to h = 0.04 for the FCC and h = 0.01 for the 
triangular lattice. At the same time a becomes increasingly negative. These results 
suggest that the best fit to  the data is 

f ( r )  = a+b  In r 

for both lattices with, of course, different values for a and 6. The fact that the sum of the 
squares of the deviations for the FCC lattice increases slightly below h = 0.04 is not 
considered significant. Using (31) we find 

0.187 for the FCC lattice 

0.363 for the triangular lattice 
a = {  

Table 6. Least squares fit off(r) to the formf(r) = a+br" where a and 6 are constants for 
various values of h. The column labelled S S Q  is the sum of the squares of the deviation of 
the numerical data from the best fit for each value of h 

FCC lattice Triangular lattice 

h a b SSQ X lo6 a .  b SSQ x 105 

1 .o 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0.09 
0.07 
0.05 
0.03 
0.01 

0,143 
0.132 
0.118 
0.100 
0.076 
0.043 

- 0.007 
- 0.09 1 
- 0.257 
- 0.756 
- 0,867 
- 1.184 
- 1.755 
- 3.086 
- 9,742 

0.054 
0.064 
0.077 
0.094 
0.117 
0.149 
0.198 
0.280 
0.446 
0.944 
1.055 
1.372 
1.942 
3.273 
9.929 

30.46 
2539 
20.8 1 
16.75 
13.22 
10.24 
7.826 
5.992 
4.746 
4.095 
4,062 
4.016 
3.993 
3.995 
4.020 

0.296 
0.268 
0,235 
0.192 
0,134 
0.054 

- 0.067 
- 0.267 
- 0.669 
- 1.872 
-2.140 
- 2.904 
- 4.279 
- 7.488 
- 23.53 

0.106 
0,129 
0.159 
0.198 
0.251 
0,328 
0.444 
0.64 1 
1.038 
2.238 
2.505 
3.269 
4.643 
7.852 
23.90 

46.65 
38.99 
3 1.89 
25.40 
19.58 
14.48 
10.15 
6.640 
3.99 1 
2.236 
2.110 
1.887 
1.702 
1,553 
1.441 
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and 
0.10 for the FCC lattice 

0.24 for the triangular lattice. 
b = {  (33) 

I t  may be objected that the data of table 5 are not sufficiently precise to  support 
these conclusions. However, the extrapolation technique used to  calculate the data of 
table 5 was repeated several times for each lattice as new data became available without 
changing appreciably the results from those tabulated. The changes had no significant 
effect on the results of the least squares procedure subsequently employed. 

Considerable ingenuity may be expended in postulating other possible forms than 
(26) and (31) forf(r). However, on the grounds that the best hypothesis is the simplest 
one that fits the data, we conclude that for short end-to-end lengths the distribution 
behaves as 

( 34) 

with the values of a and b given in (32) and (33). The agreement of h with the predicted 
value for the triangular lattice must now be viewed as a mere accident. Indeed, experi- 
menting with equation (31) it is easy to see that a log-log plot off(r)  against r would 
give an apparent slope which depends only on a and is relatively insensitive to  changes 
in a. Both the FCC and the triangular lattices would therefore give a slope of about the 
same value which would be in the range 0.4 to 0.5 when a is in the range 0.1 to 0.5. 

We conclude therefore, that the assumption (26) for F ( y )  is incorrect. This result 
casts strong doubt on the strong-scaling hypothesis. Furthermore, the logarithmic 
dependence off(r) on r is impossible to reconcile with the hypothesis. An additional 
difficulty arises from the fact that equation (31) implies h = 0, which, on substitution 
in (27), gives the scaling relation 

(35) 

(a + 6 In r) /C,  1 -'I 

d\' = "+ 1 -z. 

I t  is easy to  verify that the extrapolated values of y, a and c' do not support this relation 
in either two or three dimensions. Moreover, if the behaviour of the end-to-end distribu- 
tion approximates more and more closely to that of a random walk as the dimensionality 
is increased (Edwards 1965, Rubin 1952), then substitution of the random walk values, 

of these arguments we conclude that the strong-scaling hypothesis is not adequate to 
describe the behaviour of the end-to-end length distribution on the triangular and FCC 
lattices. 

1, - - 1, a = 0 and li = 3, in (35) clearly leads to  an absurdity as d .+ CO. On the basis 

6. Comments 

Our value of 0.745 for v for the triangular lattice is slightly lower than the value of 2 
found by Domb (1963). The lower value is supported by Hioe (1967). Corresponding 
to  the lower value of v we find 6 = 3.84 instead of 6 = 4, the value found by Domb et al 
(1965) for the simple quadratic lattice. In three dimensions 6 = 2.5 was found by Domb 
et a1 (1965) for the simple cubic lattice. The Monte-Carlo calculations of Mazur and 
McCrackin find 6 1: 2.9 for the FCC and simple-cubic lattices, but the shape parameter 
g was not included in their calculations. Putting g = 0 in figure 3 gives a value of 6 in 
approximate agreement with their results. 
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The main result of this work is that the distribution shows different behaviour for 
short end-to-end lengths and long end-to-end lengths. For long end-to-end lengths the 
theory of McKenzie and Moore gives a good description of the behaviour. However, 
for short end-to-end lengths the inadequacy of the strong-scaling hypothesis has been 
demonstrated in both two and three dimensions. 

I t  has been recognized for some time that for the Ising model and the self-avoiding 
walk problem in three dimensions, the scaling relation dv  = 2 - a  proposed by KadanoK 
er a1 (1967) is not confirmed by numerical calculations. This scaling relation, like equa- 
tions (27) and (35) relates the long-range behaviour characterized by v to  the short- 
range behaviour characterized by a. Our main result suggests that such a relation does 
not exist. Rather there are two characteristic lengths in the problem: the first is R ,  
which characterizes the decay of the distribution ; the second, is a length of the order of 
the lattice bond length and which characterizes the short-range behaviour. This length 
can be determined by rewriting (34) in the form 

where Kro  is the characteristic length and ro  is the lattice bond length. From (32) and 
(33) we obtain K = 0.155 for the FCC lattice and K = 0.224 for the triangular lattice. 
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Appendix 

We tabulate below the counting data for the first eight points nearest to the origin for 
the FCC lattice up to 11 steps and the triangular lattice up to 15 steps. The data for the 
11 step walks for the FCC have been published by Sykes et a1 (1972a) but is included 
here for completeness. The data for the full distribution are not tabulated since they 
would require considerable space. The FCC data are available in McKenzie (1967). 

FCC lattice 

Number of steps 1 2 3  

1 4 22 
- 4 24 
- 1 12 
- 2 18 

9 
1 
3 
6 

_ _  
- _  
_ _  
- _  

4 
__ 

140 
152 
114 
136 
96 
24 
52 
72 

5 
- 

970 
1080 
940 

1030 
835 
360 
575 
690 

6 
__ 

7196 
8152 
7568 
7992 
7020 
4000 
5470 
6192 

7 8 9 10 11 

56 092 
63 976 
61 728 
63 796 
58 857 
39 330 
49 303 
53 946 

452 064 
518232 
512996 
522 474 
497 360 
367912 
436 446 
466 800 

3735 700 
4299 728 
4334 884 
4369 840 
4251 804 
3370 604 
3850 752 
4053 816 

3 1 484 244 
36 360 872 
37 164 700 
37 179 840 
36 765 592 
30 630 980 
34 063 392 
35 450 940 

269613896 
312 284 536 
322 624 804 
320 861 342 
321 262 541 
277 824 572 
303 790 797 
312411672 
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Triangular lattice 
~ ~ ~~~ ~~~~~~ 

Number ofsteps 1 2 3 4 5 6 7 8 9 10 

Point 
6 1  I 2 4 10 30 98 328 1140 4040 14542 
0 2  ~ 1 6 18 50 156 508 1724 6018 21440 
191 ~- 2 6 16 46 140 464 1580 5538 19804 
0,3 ~~ ~ 1 12 54 188 636 2168 7556 26826 
132 _ _  3 16 57 184 601 2036 7072 25088 
0,4 ~ ~~ ~~~ 1 20 130 576 2218 8170 29830 
1,3 ~ _ _  4 35 166 633 2276 8107 29086 
2,2 - __ 6 40 174 644 2268 8020 28666 

Number of steps 11 12 13 14 15  

53 060 
77 632 
71 884 
96 724 
90 503 

109 192 
105 460 
103 696 

195 624 
284 706 
264 204 
353 390 
330 836 
402 258 
386 320 
379 450 

727 790 
1055 162 
980 778 

1305 126 
1222 783 
1492 746 
1428 664 
1402 276 

2728 450 
3944 956 
3671 652 
4864 450 
4561 058 
5578 742 
5327 738 
5227 366 

10 2% 720 
14858934 
13843808 
18 272 804 
17 145 990 
20 986 424 
20 014 741 
19 633 732 
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